Python Optimal Transport: Fused Gromov-Wasserstein Conditional Gradient solver

Cédric Vincent-Cuaz

October 2023

We detail the computations involved in the Conditional Gradient solvers for the Gromov-Wasserstein (GW) and Fused Gromov-Wasserstein (FGW) distances introduced in [1]. These solvers available in the Python Optimal Transport (POT)¹ library [2] circumvent to certain limitations of the original implementations: i) support symmetric and asymmetric matrices incorporating recent theoretical findings from [3]; ii) correct certain typing errors present in [4, Proposition 2] and [1, Algorithm 2].

Then we detail the Conditional Gradient solvers for the semi-relaxed (F)GW divergences introduced in [5] with an L2 inner loss and extended to the KL loss in [6].

Contents

1	Gromov-Wasserstein discrepancy	1
	1.1 Objective function	1
	1.2 Gradient computation	2
	1.3 Exact line-search for Gromov-Wasserstein	3
2	Fused Gromov-Wasserstein discrepancy	4
3	Semi-relaxed (Fused) Gromov-Wasserstein divergence	4
	3.1 Objective function and gradient computation	4
	3.2 Exact line-search for srGW	4

1 Gromov-Wasserstein discrepancy

1.1 Objective function.

In the OT context, a graph \mathcal{G} is modeled as a tuple (C, p). Where $C \in \mathbb{R}^{n \times n}$ is any pairwise similarity matrix between the nodes of the graph. And $p \in \Sigma_n$ is a probability vector encoding nodes relative importance within the graph. Considering two graphs $\mathcal{G} = (C, p)$ and $\overline{\mathcal{G}} = (\overline{C}, q)$ with respectively n and m nodes, the Gromov-Wasserstein discrepancy with inner loss $L : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ between both graphs reads as [4]:

$$GW(\boldsymbol{C}, \overline{\boldsymbol{C}}, \boldsymbol{h}, \overline{\boldsymbol{h}}) = \min_{\boldsymbol{T} \in \mathcal{U}(\boldsymbol{p}, \boldsymbol{q})} \mathcal{E}_L^{GW}(\boldsymbol{C}, \overline{\boldsymbol{C}}, \boldsymbol{T}) := \sum_{ijkl} L(C_{ik}, \overline{C}_{jl}) T_{ij} T_{kl}$$
(1)

where $\mathcal{U}(\boldsymbol{p},\boldsymbol{q}) = \{\boldsymbol{T} \in \mathbb{R}_{+}^{n \times m} | \boldsymbol{T} \boldsymbol{1}_{m} = \boldsymbol{p} , \boldsymbol{T}^{\top} \boldsymbol{1}_{n} = \boldsymbol{q} \}$. The objective function \mathcal{E}_{L}^{GW} can be conveniently factored using a 4-way tensor $\mathcal{L}(\boldsymbol{C},\overline{\boldsymbol{C}}) = \left(L(C_{ik},\overline{C}_{jl})\right)_{ijkl}$ such that for any $\boldsymbol{T} \in \mathcal{U}(\boldsymbol{p},\boldsymbol{q})$,

$$\mathcal{E}_{L}^{GW}(C, \overline{C}, T) = \langle \mathcal{L}(C, \overline{C}) \otimes T, T \rangle_{F}$$
(2)

where \otimes is the tensor-matrix multiplication satisfying $\mathcal{L}(C, \overline{C}) \otimes T = (\sum_{kl} L(C_{ik}, \overline{C}_{jl}) T_{kl})_{ij}$. [4] investigates a specific type of loss functions which can be decomposed as follows

$$L(a,b) = f_1(a) + f_2(b) - h_1(a)h_2(b)$$
(3)

for any $a, b \in \mathbb{R}$. Two specific inner losses that match this decomposition are

$$L_2(a,b) = (a-b)^2 \implies f_1(a) = a^2, \quad f_2(b) = b^2, \quad h_1(a) = a, \quad h_2(b) = 2b$$
 (L2)

¹Special features of the POT implementations will be highlighted in blue.

and

$$L_{KL}(a,b) = a \log \frac{a}{b} - a + b \implies f_1(a) = a \log a - a, \quad f_2(b) = b, \quad h_1(a) = a, \quad h_2(b) = \log b$$
 (KL)

Proposition 1 in [4] then provides the following factorization for inner losses satisfying equation 3,

$$\mathcal{L}(C, \overline{C}) \otimes T = c_{C, \overline{C}} - h_1(C)Th_2(\overline{C})^{\top}$$
(4)

where $c_{C\overline{C}} = f_1(C)p\mathbf{1}_m^\top + \mathbf{1}_n \mathbf{q}^\top f_2(\overline{C})^\top$. Then when we consider the quadratic distance we have

$$f_1(a) = a^2, \quad f_2(b) = b^2, \quad h_1(a) = a, \quad h_2(b) = 2b$$
 (5)

Remark 1.1.1: The factorization in equation 4 holds true for any matrices C and \overline{C} .

Remark 1.1.2: Relations with the POT implementations that can be found in the ot.gromov repository:

- ot.gromov.init_matrix: outputs $c_{C,\overline{C}}$, $h_1(C)$ and $h_2(\overline{C})$ that correspond to the desired inner loss functions L2 or KL.
- ot.gromov.tensor_product: outputs the tensor product $\mathcal{L}(C, \overline{C}) \otimes T$ following equation 4, given $c_{C,\overline{C}}$, $h_1(C)$, $h_2(\overline{C})$ and T.
- ot.gromov.gwloss: outputs the GW loss using the factorization in equation 2, given $c_{C,\overline{C}}$, $h_1(C)$, $h_2(\overline{C})$ and T.

1.2 Gradient computation.

The operations detailed above exactly coincide with those reported in [4]. However, when it comes down to the gradient computation authors considered the case where C and \overline{C} are symmetric. And they also forget a factor 2 in the formula present in [4, Proposition 2]. Therefore we took into considerations these two aspects in the POT implementation.

For any $T \in \mathcal{U}(p, q)$, we have

$$\frac{\partial \mathcal{E}_{L}^{GW}}{\partial T_{pq}}(C, \overline{C}, T) = \frac{\partial}{\partial T_{pq}} \sum_{ijkl} \{ f_1(C_{ik}) + f_2(\overline{C}_{jl}) - h_1(C_{ik}) h_2(\overline{C}_{jl}) \} T_{ij} T_{kl}
= \sum_{kl} \{ f_1(C_{pk}) + f_2(\overline{C}_{ql}) - h_1(C_{pk}) h_2(\overline{C}_{ql}) \} T_{kl} + \sum_{ij} \{ f_1(C_{ip}) + f_2(\overline{C}_{jq}) - h_1(C_{ip}) h_2(\overline{C}_{jq}) \} T_{ij}
= \sum_{kl} f_1(C_{pk}) p_k + \sum_{l} f_2(\overline{C}_{ql}) q_l - \sum_{kl} h_1(C_{pk}) h_2(\overline{C}_{ql}) T_{kl}
+ \sum_{i} f_1(C_{ip}) p_i + \sum_{j} f_2(\overline{C}_{jq}) q_j - \sum_{ij} h_1(C_{ip}) h_2(\overline{C}_{jq}) T_{ij}$$
(6)

Notice that following equation 4, we have

$$\left(\mathcal{L}(C,\overline{C})\otimes T\right)_{ij} = \sum_{kl} L(C_{ik},\overline{C}_{jl})T_{kl}$$

$$= \sum_{kl} \{f_1(C_{ik}) + f_2(\overline{C}_{jl}) - h_1(C_{ik})h_2(\overline{C}_{jl})\}T_{kl}$$

$$= \sum_{kl} f_1(C_{ik})p_k + \sum_{l} f_2(\overline{C}_{jl})q_l - \sum_{kl} h_1(C_{ik})h_2(\overline{C}_{jl})T_{kl}$$
(7)

and that

$$\left(\mathcal{L}(\boldsymbol{C}^{\top}, \overline{\boldsymbol{C}}^{\top}) \otimes \boldsymbol{T}\right)_{ij} = \sum_{kl} L(C_{ki}, \overline{C}_{lj}) T_{kl}$$

$$= \sum_{kl} \{f_1(C_{ki}) + f_2(\overline{C}_{lj}) - h_1(C_{ki}) h_2(\overline{C}_{lj})\} T_{kl}$$

$$= \sum_{kl} f_1(C_{ki}) p_k + \sum_{l} f_2(\overline{C}_{lj}) q_l - \sum_{kl} h_1(C_{ki}) h_2(\overline{C}_{lj}) T_{kl}$$
(8)

So we can conclude that

$$\frac{\partial \mathcal{E}_{L}^{GW}}{\partial T_{pq}}(\boldsymbol{C}, \overline{\boldsymbol{C}}, \boldsymbol{T}) = \left(\mathcal{L}(\boldsymbol{C}, \overline{\boldsymbol{C}}) \otimes \boldsymbol{T}\right)_{pq} + \left(\mathcal{L}(\boldsymbol{C}^{\top}, \overline{\boldsymbol{C}}^{\top}) \otimes \boldsymbol{T}\right)_{pq}$$
(9)

which comes down to

$$\nabla_{\boldsymbol{T}}\mathcal{E}_{L}^{GW}(\boldsymbol{C}, \overline{\boldsymbol{C}}, \boldsymbol{T}) = \mathcal{L}(\boldsymbol{C}, \overline{\boldsymbol{C}}) \otimes \boldsymbol{T} + \mathcal{L}(\boldsymbol{C}^{\top}, \overline{\boldsymbol{C}}^{\top}) \otimes \boldsymbol{T}$$
(10)

Obviously if C and \overline{C} are symmetric, both terms on the r.h.s are equal i.e

$$C = C^{\top} \text{ and } \overline{C} = \overline{C}^{\top} \implies \nabla_{T} \mathcal{E}_{L}^{GW}(C, \overline{C}, T) = 2\mathcal{L}(C, \overline{C}) \otimes T$$
 (11)

Remark 1.2.1: we currently implemented these two settings to not change the API as follows

- ot.gromov.gwggrad: outputs the gradient of the GW loss assuming that C and \overline{C} are symmetric *i.e* according to equation 11, given $c_{C,\overline{C}}$, $h_1(C)$, $h_2(\overline{C})$ and T.
- ot.gromov_wasserstein: which solves for the GW problem using Conditional Gradient handles both symmetric and asymmetric cases by defining a custom gradient function, which respectively coincide with equation 11 and equation 10.
- The gradient is handled in the same way within different solvers for GW e.g ot.gromov.entropic_gromov_wasserstein.

1.3 Exact line-search for Gromov-Wasserstein.

Following [1], POT allows to perform an exact linear-search step within the CG solver for GW. The latter involves two steps:

Step 1. Let us consider the gradient of $\mathcal{E}_L^{GW}(C, \overline{C}, T)$ w.r.t T denoted here G(T) that satisfies equation 10. We compute the conditional direction

$$X = \arg\min_{X \in \mathcal{U}(p,q)} \langle X, G(T) \rangle$$
 (12)

which comes down to a linear OT problem solved using the network flow algorithm implemented in ot.emd.

Step 2. Then we seek for an optimal γ , such that

$$\gamma = \arg\min_{\gamma \in [0,1]} f(\gamma) := \langle \mathcal{L}(C, \overline{C}) \otimes \{T + \gamma(X - T)\}, T + \gamma(X - T) \rangle$$
(13)

This objective function can be developed as a second order polynom: $f(\gamma) = a\gamma^2 + b\gamma + c$, where

$$c = f(0) = \langle \mathcal{L}(C, \overline{C}) \otimes T, T \rangle \tag{14}$$

Then writing $\mathcal{L}(C, \overline{C}) = \mathcal{L}$ for better readability, we have

$$a = \langle \mathcal{L} \otimes (X - T), X - T \rangle \tag{15}$$

Let us recall the tensor factorization of equation 4:

$$\mathcal{L} \otimes T = c_{C\overline{C}} - h_1(C)Th_2(\overline{C})^{\top}$$
(16)

where $c_{C,\overline{C}} = f_1(C)p\mathbf{1}_m^\top + \mathbf{1}_n q^\top f_2(\overline{C})^\top$. Then we have

$$a = \underbrace{\langle c_{C,\overline{C}}, X - T \rangle}_{=0} - \langle h_1(C)(X - T)h_2(\overline{C})^\top, X - T \rangle$$

$$= -\langle h_1(C)(X - T)h_2(\overline{C})^\top, X - T \rangle$$
(17)

knowing that the first term on the r.h.s is 0 because X and T have the same marginals p and q.

Finally the coefficient b of the linear term is

$$b = \langle \mathcal{L} \otimes T, X - T \rangle + \langle \mathcal{L} \otimes (X - T), T \rangle$$

$$= \langle c_{C,\overline{C}}, X - T \rangle - \langle h_1(C)Th_2(\overline{C})^\top, X - T \rangle$$

$$+ \langle c_{C,\overline{C}}, T \rangle - \langle h_1(C)Xh_2(\overline{C})^\top, T \rangle - \langle c_{C,\overline{C}}, T \rangle + \langle h_1(C)Th_2(\overline{C})^\top, T \rangle$$

$$= -\langle h_1(C)Th_2(\overline{C})^\top, X - T \rangle - \langle h_1(C)(X - T)h_2(\overline{C})^\top, T \rangle$$
(18)

as terms depending on the constant $c_{C,\overline{C}}$ cancel each other.

$\mathbf{2}$ Fused Gromov-Wasserstein discrepancy

Semi-relaxed (Fused) Gromov-Wasserstein divergence 3

Objective function and gradient computation 3.1

Given a graph $\mathcal{G} = (C, p)$ and a target graph structure $\overline{C} \in \mathbb{R}^{m \times m}$, the semi-relaxed Gromov-Wasserstein discrepancy with inner loss $L: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ between both graphs reads as [5, 6]:

$$\operatorname{srGW}(\boldsymbol{C}, \boldsymbol{p}, \overline{\boldsymbol{C}}) = \min_{\boldsymbol{T} \in \mathcal{U}_m(\boldsymbol{p})} \mathcal{E}_L^{GW}(\boldsymbol{C}, \overline{\boldsymbol{C}}, \boldsymbol{T})$$
(19)

where $\mathcal{U}_m(\mathbf{p}) = \{ \mathbf{T} \in \mathbb{R}_+^{n \times m} | \mathbf{T} \mathbf{1}_m = \mathbf{p} \}$. See Section 1.1 for details on the GW loss \mathcal{E}_L^{GW} . Adapting equation 4 to semi-relaxed couplings leads to the following factorization of the tensor-matrix multiplication:

$$\mathcal{L}(\boldsymbol{C}, \overline{\boldsymbol{C}}) \otimes \boldsymbol{T} = c_{\boldsymbol{C}, \overline{\boldsymbol{C}}}^{sr} + \mathbf{1}_{n} \boldsymbol{q}^{\top} f_{2}(\overline{\boldsymbol{C}})^{\top} - h_{1}(\boldsymbol{C}) \boldsymbol{T} h_{2}(\overline{\boldsymbol{C}})^{\top}$$
(20)

where $c_{C,\overline{C}}^{sr} = f_1(C)p\mathbf{1}_m^{\top}$ and $q = T^{\top}\mathbf{1}_n$ is now a variable.

Remark 3.1.1 Relations with the POT implementations that can be found in the ot.gromov repository:

- ot.gromov.init_matrix_semirelaxed: outputs $c^{sr}_{C,\overline{C}},\ h_1(C),\ h_2(\overline{C})$ and $f_2(\overline{C})^{\top}$ that correspond to the desired inner loss functions L2 or KL.
- The tensor product defined in equation 20 using ot.gromov.tensor_product given $c_{C,\overline{C}} = c_{C,\overline{C}}^{sr} + 1_n q^{\top} f_2(\overline{C})^{\top}$, $h_1(C), h_2(\overline{C})$ and T such that $T^{\top} \mathbf{1}_n = q$.
- The srGW loss can be computed using the ot.gromov.gwloss (see Remark 1.1.2 in Section 1.1), given $c_{C,\overline{C}} =$ $c_{C,\overline{C}}^{sr} + \mathbf{1}_n q^{\top} f_2(\overline{C})^{\top}, h_1(C), h_2(\overline{C}) \text{ and } T \text{ such that } T^{\top} \mathbf{1}_n = q.$

Remark 3.1.2: As the GW and srGW problems share the same loss, the gradients are also the same and follows equation 10, expect that the tensor-products have to be computed following equation 20. This is implemented via ot.gromov.gwggrad taking as inputs: $c_{C,\overline{C}} = c_{C,\overline{C}}^{sr} + \mathbf{1}_n q^{\top} f_2(\overline{C})^{\top}$, $h_1(C)$, $h_2(\overline{C})$ and T such that $T^{\top} \mathbf{1}_n = q$.

Exact line-search for srGW.

POT only allows to perform an exact linear-search step within the CG solver for srGW. The latter involves two steps:

Step 1. Let us consider the gradient of $\mathcal{E}_L^{GW}(C, \overline{C}, T)$ w.r.t T denoted here G(T) that satisfies equation 10. We compute the conditional direction

$$X = \arg \min_{\boldsymbol{X} \in \mathcal{U}_{m}(\boldsymbol{p})} \langle \boldsymbol{X}, \boldsymbol{G}(\boldsymbol{T}) \rangle$$

$$\boldsymbol{x}_{i} = \arg \min_{\boldsymbol{x} \in p_{i} \Sigma_{m}} \langle \boldsymbol{x}_{i}, \boldsymbol{G}_{i}(\boldsymbol{T}) \rangle \quad \forall i \in [n].$$
(21)

where G_i denotes the i-th row of G. Hence it comes down to solve n linear problems constrained to the probability simplex, which admit closed-form solutions that simply comes down to put all the mass on the minimum in G_i . Note that if this minimum is not unique, we assign equiprobable mass to its instances.

Step 2. Then we seek for an optimal γ , such that

$$\gamma = \arg\min_{\gamma \in [0,1]} f(\gamma) := \langle \mathcal{L} \otimes \{ T + \gamma (X - T) \}, T + \gamma (X - T) \rangle$$
 (22)

This objective function can be developed as a second order polynom: $f(\gamma) = a\gamma^2 + b\gamma + c$, where

$$c = f(0) = \langle \mathcal{L} \otimes T, T \rangle \tag{23}$$

Then writing $\mathcal{L}(C, \overline{C}) = \mathcal{L}$ for better readability, we have

$$a = \langle \mathcal{L} \otimes (X - T), X - T \rangle \tag{24}$$

Denoting $\boldsymbol{X}^{\top} \mathbf{1}_n = \boldsymbol{q}_X$ and $\boldsymbol{T}^{\top} \mathbf{1}_n = \boldsymbol{q}_T$ and following equation 20, we have

$$a = \langle \mathbf{1}_n (\boldsymbol{q}_X - \boldsymbol{q}_T)^\top f_2(\overline{\boldsymbol{C}})^\top - h_1(\boldsymbol{C})(\boldsymbol{X} - \boldsymbol{T})h_2(\overline{\boldsymbol{C}})^\top, \boldsymbol{X} - \boldsymbol{T} \rangle$$
(25)

Finally the coefficient b of the linear term is

$$b = \langle \mathcal{L} \otimes \boldsymbol{T}, \boldsymbol{X} - \boldsymbol{T} \rangle + \langle \mathcal{L} \otimes (\boldsymbol{X} - \boldsymbol{T}), \boldsymbol{T} \rangle$$

$$= \langle c_{\boldsymbol{C}, \overline{\boldsymbol{C}}}^{sr} + \mathbf{1}_n \boldsymbol{q}_T^{\top} f_2(\overline{\boldsymbol{C}})^{\top} - h_1(\boldsymbol{C}) \boldsymbol{T} h_2(\overline{\boldsymbol{C}})^{\top}, \boldsymbol{X} - \boldsymbol{T} \rangle$$

$$+ \langle c_{\boldsymbol{C}, \overline{\boldsymbol{C}}}^{sr} + \mathbf{1}_n \boldsymbol{q}_X^{\top} f_2(\overline{\boldsymbol{C}})^{\top} - h_1(\boldsymbol{C}) \boldsymbol{X} h_2(\overline{\boldsymbol{C}})^{\top}, \boldsymbol{T} \rangle - \langle c_{\boldsymbol{C}, \overline{\boldsymbol{C}}}^{sr} + \mathbf{1}_n \boldsymbol{q}_T^{\top} f_2(\overline{\boldsymbol{C}})^{\top} - h_1(\boldsymbol{C}) \boldsymbol{T} h_2(\overline{\boldsymbol{C}})^{\top}, \boldsymbol{T} \rangle$$

$$= \langle \mathbf{1}_n \boldsymbol{q}_T^{\top} f_2(\overline{\boldsymbol{C}})^{\top} - h_1(\boldsymbol{C}) \boldsymbol{T} h_2(\overline{\boldsymbol{C}})^{\top}, \boldsymbol{X} - \boldsymbol{T} \rangle$$

$$+ \langle \mathbf{1}_n (\boldsymbol{q}_X^{\top} - \boldsymbol{q}_T^{\top}) f_2(\overline{\boldsymbol{C}})^{\top} - h_1(\boldsymbol{C}) (\boldsymbol{X} - \boldsymbol{T}) h_2(\overline{\boldsymbol{C}})^{\top}, \boldsymbol{T} \rangle$$

$$(26)$$

as terms depending on the constant $c_{C,\overline{C}}$ cancel each other.

References

- [1] Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. Optimal transport for structured data with application on graphs. In *International Conference on Machine Learning*, pages 6275–6284. PMLR, 2019.
- [2] Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python optimal transport. *The Journal of Machine Learning Research*, 22(1):3571–3578, 2021.
- [3] Samir Chowdhury and Facundo Mémoli. The gromov–wasserstein distance between networks and stable network invariants. *Information and Inference: A Journal of the IMA*, 8(4):757–787, 2019.
- [4] Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and distance matrices. In *International conference on machine learning*, pages 2664–2672. PMLR, 2016.
- [5] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty. Semi-relaxed gromov-wasserstein divergence and applications on graphs. In *International Conference on Learning Representations*, 2021.
- [6] Hugues Van Assel, Cédric Vincent-Cuaz, Titouan Vayer, Rémi Flamary, and Nicolas Courty. Interpolating between clustering and dimensionality reduction with gromov-wasserstein. arXiv preprint arXiv:2310.03398, 2023.