Python Optimal Transport: Fused Gromov-Wasserstein Conditional
Gradient solver

Cédric Vincent-Cuaz

October 2023

We detail the computations involved in the Conditional Gradient solvers for the Gromov-Wasserstein (GW)
and Fused Gromov-Wasserstein (FGW) distances introduced in [I]. These solvers available in the Python Optimal
Transport (POT)E| library [2] circumvent to certain limitations of the original implementations : i) support symmetric
and asymmetric matrices incorporating recent theoretical findings from [3]; ii) correct certain typing errors present
in [4, Proposition 2] and [T, Algorithm 2].

Then we detail the Conditional Gradient solvers for the semi-relaxed (F)GW divergences introduced in [5] with
an L2 inner loss and extended to the KL loss in [6].

Contents

[L Gromov-Wasserstein discrepancy| 1
[I.I Objective function.| o e e e e e e 1
1.2 Gradient computation. 2
1.3 FExact line-search for G . 1 3

2 Fused Gromov-Wasserstein discrepancy| 4

[3 Semi-relaxed (Fused) Gromov-Wasserstein divergence| 4
[3.1 Objective tunction and gradient computation| L Lo 4
3.2 Exact line-search for stGW. oL 4

1 Gromov-Wasserstein discrepancy

1.1 Objective function.

In the OT context, a graph G is modeled as a tuple (C,p). Where C € R™ " is any pairwise similarity matrix
between the nodes of the graph. And p € 3, is a probability vector encoding nodes relative importance within the
graph. Considering two graphs G = (C,p) and G = (C, q) with respectively n and m nodes, the Gromov-Wasserstein
discrepancy with inner loss L : R x R — R between both graphs reads as [4]:

C,h,h)= mi W, C,T):= L(Ciy,C:)Ti:Th 1
GW(C,C hh) = min £7"(C,C.T) ijl (Cirs Ci0) 5T (1)

where U(p,q) = {T eRY™ T, =p, T'1, = q}. The objective function £ can be conveniently factored
using a 4-way tensor £L(C,C) = (L(Cik’éjl))ijkl such that for any T € U(p, q),

EEV(C,C,T) = (L(C,C)T,T)r (2)

where ® is the tensor-matrix multiplication satisfying £(C,C) @ T = (>, L(C’ik,éjl)Tkl)U. [4] investigates a
specific type of loss functions which can be decomposed as follows

L(a,b) = fi(a) + fa(b) — hi(a)ha(b) (3)
for any a,b € R. Two specific inner losses that match this decomposition are

Ly(a,b) = (a —b)* = fi(a) =a®, fa(b) =0 hi(a) =a, ho(b)=2b (L2)

1Special features of the POT implementations will be highlighted in blue.

and
Lkr(a,b) = alog% —a+b = fi(a) =aloga—a, fo(b)="0b, hi(a)=a, ha(b)=1logb (KL)
Proposition 1 in [4] then provides the following factorization for inner losses satisfying equation
L(C,C)®T =ccg — h(C)Thy(C)T (4)
where co & = f(C)pl] +1,q7 fo(C)T. Then when we consider the quadratic distance we have
fila) =a? fo(b) =b%, hi(a) =a, ha(b)=2b (5)

Remark 1.1.1: The factorization in equation [4| holds true for any matrices C and C.
Remark 1.1.2: Relations with the POT implementations that can be found in the ot.gromov repository:

e ot.gromov.init matrix: outputs ¢ g, hi(C) and hy(C) that correspond to the desired inner loss functions

or KTl

e ot.gromov.tensor_product: outputs the tensor product £(C,C) ® T following equation [4] given co.o hi(C),
ha(C) and T.

e ot.gromov.gwloss: outputs the GW loss using the factorization in equation |2} given c¢s &, hi1(C), ho(C) and
T.

1.2 Gradient computation.

The operations detailed above exactly coincide with those reported in [4]. However, when it comes down to the
gradient computation authors considered the case where C' and C are symmetric. And they also forget a factor 2
in the formula present in [4, Proposition 2]. Therefore we took into considerations these two aspects in the POT
implementation.

For any T € U(p, q), we have

DECW
T

(C,C,T) =

8T Z{fl ik +f2() (zk)h2()} Tkl

pq ijkl

=Z{f1 (Cpr) + f2(Cat) = b1 (Cor)h2(Can)} T + > _{f1(Cip) + f2(Ciq) = h1(Cip)ha(Cjg) YTy

ij

—Zfl Pk pk+Zf26 Q@ — Zhl o) P (Cor) T
+Zf1 ip erZfz q)4j —Z]h iw)h2(Ciq)Tij
j

(6)
Notice that following equation [4 we have
(£(C,C)eT), ZL it Cjt) T
= Z{ﬁ i) + f2(Cj1) = hi(Cir)h2(C1) } T (7)
= Zf1 ik)Pk + Zfz D@ — Y h(Cik)ha(Cj1) T
kl
and that
(,C(CT76T) X T)ij = Z L(Cki,élj)Tkl
kl
= > _{f1(Chi) + f2(Cly) = h(Cri)ha(C1y)} Tha (8)
kl
=Y ACri)pr + > f2(Crj)a = > h1(Cri)ha(Cij) T
k 1 kl
So we can conclude that
o™ (C,C,T) = (L(C,C)eT) + (c(cT C)®T) 9)
Ty pq Pq

which comes down to

VrEfY(C,C.T) = £(C,C) o T+ L(CT,C)& T (10)
Obviously if C and C are symmetric, both terms on the r.h.s are equal i.e
C=CTandC=C' = V&Y(C,C,T)=2L(C,C)®T (11)

Remark 1.2.1: we currently implemented these two settings to not change the API as follows

° ot.gromov.ggrad: outputs the gradient of the GW loss assuming that C and C are symmetric i.e according

to equation (11} given ¢ &, hi(C), ho(C) and T.

e ot.gromov.gromov_wasserstein: which solves for the GW problem using Conditional Gradient handles both
symmetric and asymmetric cases by defining a custom gradient function, which respectively coincide with
equation [T1] and equation [I0]

e The gradient is handled in the same way within different solvers for GW e.g ot.gromov.entropic_gromov_wasserstein.

1.3 Exact line-search for Gromov-Wasserstein.

Following [I], POT allows to perform an exact linear-search step within the CG solver for GW. The latter involves
two steps:

Step 1. Let us consider the gradient of £V (C, C,T) w.r.t T denoted here G(T) that satisfies equation We
compute the conditional direction

X = in (X,G(T 12
“’”gxé{}tﬂ,q% ,G(T)) (12)

which comes down to a linear OT problem solved using the network flow algorithm implemented in ot.emd.

Step 2. Then we seek for an optimal -, such that

7 =arg min, f() = (L(C,C){T + (X —T)},T +~(X - T)) (13)

This objective function can be developed as a second order polynom: f(vy) = ay? + by + ¢, where
c=f(0)=(L(C,C)®T,T) (14)
Then writing £(C, C) = L for better readability, we have
a={LR(X-T),X-T) (15)
Let us recall the tensor factorization of equation [4}
LT =cge—m(C)Thy(C)" (16)

where co & = f(C)pl] +1,q7 fo(C)". Then we have

a=(coen X —T) —((C)(X ~ T)ho(C) T, X ~ T)

=0 (17)

=~ (M(C)(X -T)h(C)", X - T)
knowing that the first term on the r.h.s is 0 because X and T have the same marginals p and q.

Finally the coefficient b of the linear term is

b={LRT,X -T)+{(L® (X -T),T)
= (cce: X —T) — (M (C)The(C)", X - T) s
+{cce T) = (m(C)Xh2(C)T. T) — (cc 5 T) + (h(C)The(C) T, T) 1)

= —(h(C)Thy(C)", X —T) — (h(C)(X — T)hy(C)",T)

as terms depending on the constant ¢ & cancel each other.

2 Fused Gromov-Wasserstein discrepancy

3 Semi-relaxed (Fused) Gromov-Wasserstein divergence

3.1 Objective function and gradient computation

Given a graph G = (C, p) and a target graph structure C € R™*™ the semi-relaxed Gromov-Wasserstein discrepancy
with inner loss L : R x R — R, between both graphs reads as [5l, [6]:

stGW(C,p,C) = Tenluin(p eV (c,C, 1) (19)

where Uy, (p) = {T € R}*™|T1,, = p}. See Section for details on the GW loss £FW.
Adapting equation [4] to semi-relaxed couplings leads to the following factorization of the tensor-matrix multipli-
cation:

LIC,C)OT =ct 5+ 1nq" f2(C)"T — hi(C)Thy(C)" (20)
where cSCTE = f1(C)pl] and q = TT1, is now a variable.

Remark 3.1.1 Relations with the POT implementations that can be found in the ot.gromov repository:

ST

e ot.gromov.init_matrix_semirelaxed: outputs 7 =, h1(C), ha(C) and fo(C)T that correspond to the desired
inner loss functions [2] or [KT1

e The tensor Broduct defined in equation [20| using ot.gromov.tensor_product given cce = Cg,é +1,q" fo(C)7,
hi(C), ho(C) and T such that T'1,, = q.

e The srGW loss can be computed using the ot.gromov.gwloss (see Remark 1.1.2 in Section 7 given co g =
ot 1,q" f2(C)7, hi(C), ha(C) and T such that T'1,, = gq.

Remark 3.1.2: As the GW and stGW problems share the same loss, the gradients are also the same and follows
equation [0} expect that the tensor-products have to be computed following equation 20} This is implemented via
ot.gromov.gwggrad taking as inputs: cc 5 =cg5 5+ 1,q" fo(C)T, hi(C), ha(C) and T such that T'1,, = q.

3.2 Exact line-search for srGW.

POT only allows to perform an exact linear-search step within the CG solver for srGW. The latter involves two steps:

Step 1. Let us consider the gradient of £V (C, C,T) w.r.t T denoted here G(T) that satisfies equation We
compute the conditional direction

X = in (X,G(T
" x Bty P E)
x;=arg min (x;,G;(T)) Vi€ [n].

TEPi X,

(21)

where G; denotes the i-th row of G. Hence it comes down to solve n linear problems constrained to the probability
simplex, which admit closed-form solutions that simply comes down to put all the mass on the minimum in G;. Note
that if this minimum is not unique, we assign equiprobable mass to its instances.

Step 2. Then we seek for an optimal -, such that

v=arg min f(v):= (LT +y(X -T)},T+~(X -T)) (22)

~v€[0,1]
This objective function can be developed as a second order polynom: f(vy) = ay? + by + ¢, where
c=f0)=(LeT,T) (23)
Then writing £(C, C) = L for better readability, we have
a={L(X-T),X-T) (24)
Denoting X '1,, = gx and T'"1,, = g and following equation we have

a=(La(gx — qr) f2(C)" — m(C)(X ~T)ho(C)", X ~ T) (25)

Finally the coefficient b of the linear term is

—(LRT,X-T)+ (L& (X -T),T)

= (g5 + 1047 2(C)" — hi(C)Thy(C)", X ~T)

+ g5+ 1uax 2(C)" — i (C)Xh2(C)T,T) — (g5 + 1aar 2(C)T — hi(C)Tha(C) T, T) (26)
= (L.l (O - (C)Th(©), X - T)

+ (Lu(ax — a7)f2(C)"T = i (C)(X = T)hs(C) ", T)

as terms depending on the constant c, & cancel each other.

References

[1]

2]

Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. Optimal transport for structured data
with application on graphs. In International Conference on Machine Learning, pages 6275-6284. PMLR, 2019.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanislas Chambon,
Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python optimal transport. The
Journal of Machine Learning Research, 22(1):3571-3578, 2021.

Samir Chowdhury and Facundo Mémoli. The gromov—wasserstein distance between networks and stable network
invariants. Information and Inference: A Journal of the IMA, 8(4):757-787, 2019.

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and distance matrices.
In International conference on machine learning, pages 2664-2672. PMLR, 2016.

Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty. Semi-relaxed gromov-
wasserstein divergence and applications on graphs. In International Conference on Learning Representations,
2021.

Hugues Van Assel, Cédric Vincent-Cuaz, Titouan Vayer, Rémi Flamary, and Nicolas Courty. Interpolating
between clustering and dimensionality reduction with gromov-wasserstein. arXiv preprint arXiv:2310.03398,
2023.

	Gromov-Wasserstein discrepancy
	Objective function.
	Gradient computation.
	Exact line-search for Gromov-Wasserstein.

	Fused Gromov-Wasserstein discrepancy
	Semi-relaxed (Fused) Gromov-Wasserstein divergence
	Objective function and gradient computation
	Exact line-search for srGW.

