
Python Optimal Transport: Fused Gromov-Wasserstein Conditional

Gradient solver

Cédric Vincent-Cuaz

October 2023

We detail the computations involved in the Conditional Gradient solvers for the Gromov-Wasserstein (GW)
and Fused Gromov-Wasserstein (FGW) distances introduced in [1]. These solvers available in the Python Optimal
Transport (POT)1 library [2] circumvent to certain limitations of the original implementations : i) support symmetric
and asymmetric matrices incorporating recent theoretical findings from [3]; ii) correct certain typing errors present
in [4, Proposition 2] and [1, Algorithm 2].

Then we detail the Conditional Gradient solvers for the semi-relaxed (F)GW divergences introduced in [5] with
an L2 inner loss and extended to the KL loss in [6].

Contents

1 Gromov-Wasserstein discrepancy 1
1.1 Objective function. 1
1.2 Gradient computation. 2
1.3 Exact line-search for Gromov-Wasserstein. 3

2 Fused Gromov-Wasserstein discrepancy 4

3 Semi-relaxed (Fused) Gromov-Wasserstein divergence 4
3.1 Objective function and gradient computation . 4
3.2 Exact line-search for srGW. 4

1 Gromov-Wasserstein discrepancy

1.1 Objective function.

In the OT context, a graph G is modeled as a tuple (C,p). Where C ∈ Rn×n is any pairwise similarity matrix
between the nodes of the graph. And p ∈ Σn is a probability vector encoding nodes relative importance within the
graph. Considering two graphs G = (C,p) and G = (C, q) with respectively n and m nodes, the Gromov-Wasserstein
discrepancy with inner loss L : R× R → R+ between both graphs reads as [4]:

GW(C,C,h,h) = min
T∈U(p,q)

EGW
L (C,C,T) :=

∑
ijkl

L(Cik, Cjl)TijTkl (1)

where U(p, q) =
{
T ∈ Rn×m

+ |T1m = p , T⊤1n = q
}
. The objective function EGW

L can be conveniently factored

using a 4-way tensor L(C,C) =
(
L(Cik, Cjl)

)
ijkl

such that for any T ∈ U(p, q),

EGW
L (C,C,T) = ⟨L(C,C)⊗ T ,T ⟩F (2)

where ⊗ is the tensor-matrix multiplication satisfying L(C,C) ⊗ T =
(∑

kl L(Cik, Cjl)Tkl

)
ij
. [4] investigates a

specific type of loss functions which can be decomposed as follows

L(a, b) = f1(a) + f2(b)− h1(a)h2(b) (3)

for any a, b ∈ R. Two specific inner losses that match this decomposition are

L2(a, b) = (a− b)2 =⇒ f1(a) = a2, f2(b) = b2, h1(a) = a, h2(b) = 2b (L2)

1Special features of the POT implementations will be highlighted in blue.

1

and

LKL(a, b) = a log
a

b
− a+ b =⇒ f1(a) = a log a− a, f2(b) = b, h1(a) = a, h2(b) = log b (KL)

Proposition 1 in [4] then provides the following factorization for inner losses satisfying equation 3,

L(C,C)⊗ T = cC,C − h1(C)Th2(C)⊤ (4)

where cC,C = f1(C)p1⊤
m + 1nq

⊤f2(C)⊤. Then when we consider the quadratic distance we have

f1(a) = a2, f2(b) = b2, h1(a) = a, h2(b) = 2b (5)

Remark 1.1.1: The factorization in equation 4 holds true for any matrices C and C.
Remark 1.1.2: Relations with the POT implementations that can be found in the ot.gromov repository:

• ot.gromov.init matrix: outputs cC,C , h1(C) and h2(C) that correspond to the desired inner loss functions L2
or KL.

• ot.gromov.tensor product: outputs the tensor product L(C,C) ⊗ T following equation 4, given cC,C , h1(C),

h2(C) and T .

• ot.gromov.gwloss: outputs the GW loss using the factorization in equation 2, given cC,C , h1(C), h2(C) and
T .

1.2 Gradient computation.

The operations detailed above exactly coincide with those reported in [4]. However, when it comes down to the
gradient computation authors considered the case where C and C are symmetric. And they also forget a factor 2
in the formula present in [4, Proposition 2]. Therefore we took into considerations these two aspects in the POT
implementation.

For any T ∈ U(p, q), we have

∂EGW
L

∂Tpq
(C,C,T) =

∂

∂Tpq

∑
ijkl

{f1(Cik) + f2(Cjl)− h1(Cik)h2(Cjl)}TijTkl

=
∑
kl

{f1(Cpk) + f2(Cql)− h1(Cpk)h2(Cql)}Tkl +
∑
ij

{f1(Cip) + f2(Cjq)− h1(Cip)h2(Cjq)}Tij

=
∑
k

f1(Cpk)pk +
∑
l

f2(Cql)ql −
∑
kl

h1(Cpk)h2(Cql)Tkl

+
∑
i

f1(Cip)pi +
∑
j

f2(Cjq)qj −
∑
ij

h1(Cip)h2(Cjq)Tij

(6)

Notice that following equation 4, we have(
L(C,C)⊗ T

)
ij
=

∑
kl

L(Cik, Cjl)Tkl

=
∑
kl

{f1(Cik) + f2(Cjl)− h1(Cik)h2(Cjl)}Tkl

=
∑
k

f1(Cik)pk +
∑
l

f2(Cjl)ql −
∑
kl

h1(Cik)h2(Cjl)Tkl

(7)

and that (
L(C⊤,C

⊤
)⊗ T

)
ij
=

∑
kl

L(Cki, Clj)Tkl

=
∑
kl

{f1(Cki) + f2(Clj)− h1(Cki)h2(Clj)}Tkl

=
∑
k

f1(Cki)pk +
∑
l

f2(Clj)ql −
∑
kl

h1(Cki)h2(Clj)Tkl

(8)

So we can conclude that

∂EGW
L

∂Tpq
(C,C,T) =

(
L(C,C)⊗ T

)
pq

+
(
L(C⊤,C

⊤
)⊗ T

)
pq

(9)

2

which comes down to
∇T EGW

L (C,C,T) = L(C,C)⊗ T + L(C⊤,C
⊤
)⊗ T (10)

Obviously if C and C are symmetric, both terms on the r.h.s are equal i.e

C = C⊤ and C = C
⊤

=⇒ ∇T EGW
L (C,C,T) = 2L(C,C)⊗ T (11)

Remark 1.2.1: we currently implemented these two settings to not change the API as follows

• ot.gromov.gwggrad: outputs the gradient of the GW loss assuming that C and C are symmetric i.e according
to equation 11, given cC,C , h1(C), h2(C) and T .

• ot.gromov.gromov wasserstein: which solves for the GW problem using Conditional Gradient handles both
symmetric and asymmetric cases by defining a custom gradient function, which respectively coincide with
equation 11 and equation 10.

• The gradient is handled in the same way within different solvers for GW e.g ot.gromov.entropic gromov wasserstein.

1.3 Exact line-search for Gromov-Wasserstein.

Following [1], POT allows to perform an exact linear-search step within the CG solver for GW. The latter involves
two steps:

Step 1. Let us consider the gradient of EGW
L (C,C,T) w.r.t T denoted here G(T) that satisfies equation 10. We

compute the conditional direction
X = arg min

X∈U(p,q)
⟨X,G(T)⟩ (12)

which comes down to a linear OT problem solved using the network flow algorithm implemented in ot.emd.

Step 2. Then we seek for an optimal γ, such that

γ = arg min
γ∈[0,1]

f(γ) := ⟨L(C,C)⊗ {T + γ(X − T)},T + γ(X − T)⟩ (13)

This objective function can be developed as a second order polynom: f(γ) = aγ2 + bγ + c, where

c = f(0) = ⟨L(C,C)⊗ T ,T ⟩ (14)

Then writing L(C,C) = L for better readability, we have

a = ⟨L ⊗ (X − T),X − T ⟩ (15)

Let us recall the tensor factorization of equation 4:

L ⊗ T = cC,C − h1(C)Th2(C)⊤ (16)

where cC,C = f1(C)p1⊤
m + 1nq

⊤f2(C)⊤. Then we have

a = ⟨cC,C ,X − T ⟩︸ ︷︷ ︸
=0

−⟨h1(C)(X − T)h2(C)⊤,X − T ⟩

= −⟨h1(C)(X − T)h2(C)⊤,X − T ⟩
(17)

knowing that the first term on the r.h.s is 0 because X and T have the same marginals p and q.

Finally the coefficient b of the linear term is

b = ⟨L ⊗ T ,X − T ⟩+ ⟨L ⊗ (X − T),T ⟩
= ⟨cC,C ,X − T ⟩ − ⟨h1(C)Th2(C)⊤,X − T ⟩

+ ⟨cC,C ,T ⟩ − ⟨h1(C)Xh2(C)⊤,T ⟩ − ⟨cC,C ,T ⟩+ ⟨h1(C)Th2(C)⊤,T ⟩

= −⟨h1(C)Th2(C)⊤,X − T ⟩ − ⟨h1(C)(X − T)h2(C)⊤,T ⟩

(18)

as terms depending on the constant cC,C cancel each other.

3

2 Fused Gromov-Wasserstein discrepancy

3 Semi-relaxed (Fused) Gromov-Wasserstein divergence

3.1 Objective function and gradient computation

Given a graph G = (C,p) and a target graph structureC ∈ Rm×m, the semi-relaxed Gromov-Wasserstein discrepancy
with inner loss L : R× R → R+ between both graphs reads as [5, 6]:

srGW(C,p,C) = min
T∈Um(p

EGW
L (C,C,T) (19)

where Um(p) =
{
T ∈ Rn×m

+ |T1m = p
}
. See Section 1.1 for details on the GW loss EGW

L .
Adapting equation 4 to semi-relaxed couplings leads to the following factorization of the tensor-matrix multipli-

cation:
L(C,C)⊗ T = csr

C,C
+ 1nq

⊤f2(C)⊤ − h1(C)Th2(C)⊤ (20)

where csr
C,C

= f1(C)p1⊤
m and q = T⊤1n is now a variable.

Remark 3.1.1 Relations with the POT implementations that can be found in the ot.gromov repository:

• ot.gromov.init matrix semirelaxed: outputs csr
C,C

, h1(C), h2(C) and f2(C)⊤ that correspond to the desired

inner loss functions L2 or KL.

• The tensor product defined in equation 20 using ot.gromov.tensor product given cC,C = csr
C,C

+ 1nq
⊤f2(C)⊤,

h1(C), h2(C) and T such that T⊤1n = q.

• The srGW loss can be computed using the ot.gromov.gwloss (see Remark 1.1.2 in Section 1.1), given cC,C =

csr
C,C

+ 1nq
⊤f2(C)⊤, h1(C), h2(C) and T such that T⊤1n = q.

Remark 3.1.2: As the GW and srGW problems share the same loss, the gradients are also the same and follows
equation 10, expect that the tensor-products have to be computed following equation 20. This is implemented via
ot.gromov.gwggrad taking as inputs: cC,C = csr

C,C
+ 1nq

⊤f2(C)⊤, h1(C), h2(C) and T such that T⊤1n = q.

3.2 Exact line-search for srGW.

POT only allows to perform an exact linear-search step within the CG solver for srGW. The latter involves two steps:

Step 1. Let us consider the gradient of EGW
L (C,C,T) w.r.t T denoted here G(T) that satisfies equation 10. We

compute the conditional direction

X = arg min
X∈Um(p)

⟨X,G(T)⟩

xi = arg min
x∈piΣm

⟨xi,Gi(T)⟩ ∀i ∈ [[n]].
(21)

where Gi denotes the i-th row of G. Hence it comes down to solve n linear problems constrained to the probability
simplex, which admit closed-form solutions that simply comes down to put all the mass on the minimum in Gi. Note
that if this minimum is not unique, we assign equiprobable mass to its instances.

Step 2. Then we seek for an optimal γ, such that

γ = arg min
γ∈[0,1]

f(γ) := ⟨L ⊗ {T + γ(X − T)},T + γ(X − T)⟩ (22)

This objective function can be developed as a second order polynom: f(γ) = aγ2 + bγ + c, where

c = f(0) = ⟨L ⊗ T ,T ⟩ (23)

Then writing L(C,C) = L for better readability, we have

a = ⟨L ⊗ (X − T),X − T ⟩ (24)

Denoting X⊤1n = qX and T⊤1n = qT and following equation 20, we have

a = ⟨1n(qX − qT)
⊤f2(C)⊤ − h1(C)(X − T)h2(C)⊤,X − T ⟩ (25)

4

Finally the coefficient b of the linear term is

b = ⟨L ⊗ T ,X − T ⟩+ ⟨L ⊗ (X − T),T ⟩
= ⟨csr

C,C
+ 1nq

⊤
T f2(C)⊤ − h1(C)Th2(C)⊤,X − T ⟩

+ ⟨csr
C,C

+ 1nq
⊤
Xf2(C)⊤ − h1(C)Xh2(C)⊤,T ⟩ − ⟨csr

C,C
+ 1nq

⊤
T f2(C)⊤ − h1(C)Th2(C)⊤,T ⟩

= ⟨1nq
⊤
T f2(C)⊤ − h1(C)Th2(C)⊤,X − T ⟩

+ ⟨1n(q
⊤
X − q⊤

T)f2(C)⊤ − h1(C)(X − T)h2(C)⊤,T ⟩

(26)

as terms depending on the constant cC,C cancel each other.

References

[1] Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. Optimal transport for structured data
with application on graphs. In International Conference on Machine Learning, pages 6275–6284. PMLR, 2019.

[2] Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanislas Chambon,
Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python optimal transport. The
Journal of Machine Learning Research, 22(1):3571–3578, 2021.

[3] Samir Chowdhury and Facundo Mémoli. The gromov–wasserstein distance between networks and stable network
invariants. Information and Inference: A Journal of the IMA, 8(4):757–787, 2019.

[4] Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and distance matrices.
In International conference on machine learning, pages 2664–2672. PMLR, 2016.

[5] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty. Semi-relaxed gromov-
wasserstein divergence and applications on graphs. In International Conference on Learning Representations,
2021.

[6] Hugues Van Assel, Cédric Vincent-Cuaz, Titouan Vayer, Rémi Flamary, and Nicolas Courty. Interpolating
between clustering and dimensionality reduction with gromov-wasserstein. arXiv preprint arXiv:2310.03398,
2023.

5

	Gromov-Wasserstein discrepancy
	Objective function.
	Gradient computation.
	Exact line-search for Gromov-Wasserstein.

	Fused Gromov-Wasserstein discrepancy
	Semi-relaxed (Fused) Gromov-Wasserstein divergence
	Objective function and gradient computation
	Exact line-search for srGW.

